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ABSTRACT
We compare the use of three algorithms for performing automated morphological galaxy classiÐcation

using a sample of 800 galaxies. ClassiÐers are created using a single training set as well as bootstrap
replicates of the training set, producing an ensemble of classiÐers. We use a Naive Bayes classiÐer, a
neural network trained with backpropagation, and a decision-tree induction algorithm with pruning.
Previous work in the Ðeld has emphasized backpropagation networks and decision trees. The Naive
Bayes classiÐer is easy to understand and implement and often works remarkably well on real-world
data. For each of these algorithms, we examine the classiÐcation accuracy of individual classiÐers using
10-fold cross validation and of ensembles of classiÐers trained using 25 bootstrap data sets and tested on
the same cross-validation test sets. Our results show that (1) the neural network produced the best indi-
vidual classiÐers (lowest classiÐcation error) for the majority of cases, (2) the ensemble approach signiÐ-
cantly reduced the classiÐcation error for the neural network and the decision-tree classiÐers but not for
the Naive Bayes classiÐer, (3) the ensemble approach worked better for decision trees (typical error
reduction of 12%È23%) than for the neural network (typical error reduction of 7%È12%), and (4) the
relative improvement when using ensembles decreases as the number of output classes increases. While
more extensive comparisons are needed (e.g., a variety of data and classiÐers), our work is the Ðrst
demonstration that the ensemble approach can signiÐcantly increase the performance of certain automa-
ted classiÐcation methods when applied to the domain of morphological galaxy classiÐcation.
Subject headings : galaxies : fundamental parameters È methods : data analysis È methods : numerical

1. INTRODUCTION

A variety of approaches have been used to perform auto-
matic classiÐcation of galaxies based on their morphology.
Neural networks and decision trees are the two most com-
monly used classiÐcation methods in astronomy. With both
of these methods, classiÐcation is performed by presenting
an algorithm with a training data set that consists of a set of
objects that have been previously labeled with a class. The
algorithm then tries to produce classiÐcations of the train-
ing set objects that agree with the predeÐned class labels.
Once the algorithm classiÐcations and the class labels agree
to a certain level of accuracy, the learning process is halted,
and the internal state of the algorithm is saved. We call this
a classiÐer. The classiÐer may then be applied to a set of
unlabeled objects, the test set, and it will predict the class of
each object.

The neural network and decision-tree approaches to
morphological galaxy classiÐcation that have been used to
date all rely on using a single classiÐer to predict the class of
an unknown object. However, ensembles of classiÐers can
be used to combine the predictions of several individual
classiÐers to produce a new classiÐer that often has lower
classiÐcation error than the individual constituents. In this
paper we examine the creation of ensembles using bootstrap
aggregation (Breiman 1996) of three types of classiÐers : the
Naive Bayes classiÐer, neural networks trained with back-
propagation, and a decision-tree induction algorithm.

Early work on morphological classiÐcation using neural
networks was done by Storrie-Lombardi et al. (1992). They
used a neural network trained with backpropagation using
13 input parameters to classify galaxies into Ðve classes : E,
S0, Sa]Sb, Sc]Sd, and Irr. Their input data of 5217 gal-

axies was randomly split into two groups : a training set of
1700 objects and a test set of 3517 objects. They reported a
64% classiÐcation accuracy if the highest probability output
was used to represent the class and a 90% accuracy if the
Ðrst or second highest probability represented the output.

Naim et al. (1995) trained a neural network using back-
propagation to classify 831 galaxies from the Automatic
Plate Measuring Facility survey (e.g., Maddox et al. 1990).
They used one output node with a range of possible values
from [5 to 10. Most of their runs used 13 input features
that were derived from a set of 24 features using principal
component analysis. They compared the results of the
neural network classiÐer to the results of six human experts
and reported an rms error, relative to the mean of the
experts, of 1.8 Revised Hubble types. This number was com-
parable to the dispersion among the experts.

Owens, Griffiths, & Ratnatunga (1996) used oblique deci-
sion trees for classiÐcation of the same data and features as
Storrie-Lombardi et al. (1992), again splitting the data into
a 1700 object training set and 3517 object test set. They did
not specify if the objects in each set corresponded exactly to
those of Storrie-Lombardi et al. (1992). The overall accu-
racy they reported was about 63% for the single training
and test sets and about 64% using a Ðvefold cross-
validation procedure.

Several methods of creating ensembles have been studied
in the machine-learning literature. Boosting (Freund &
Schapire 1996) is a family of algorithms that works iter-
atively by examining the examples that were incorrectly
classiÐed in the previous iterations and including multiple
instances of those examples. Certain simple randomization
techniques have also been shown to work well for creating
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ensembles using decision trees (Dietterich 2000) and neural
networks (Opitz & Maclin 1999). All of these ensemble
methods have shown classiÐcation error reductions that are
typically in the 20%È30% range, although some data sets
have shown up to 80% reductions.

In this paper we report initial results from using ensem-
bles of classiÐers to perform morphological classiÐcation of
800 galaxies into two to six galaxy classes. A useful galaxy
classiÐer should be able to place an example object correct-
ly into one of several classes. We investigate the accuracy of
three classiÐcation techniques : Naive Bayes, a neural
network trained with backpropagation, and a decision-tree
induction algorithm, when used to classify objects into
multiple output classes. The neural network and decision-
tree ensembles show signiÐcant improvement in accuracy
over the individual classiÐers, with the decision tree
showing more improvement than the neural network. The
Naive Bayes classiÐer shows no signiÐcant change. We also
Ðnd that the relative improvement of ensembles over indi-
vidual classiÐers decreases with increasing number of
output classes.

In ° 2 we discuss the di†erent classiÐcation methods we
used and give a detailed description of the bagging
approach to ensembles. In ° 3 we describe the data we used
and the features extracted from the galaxy images. Our
results are presented in ° 4, and a discussion of these results
is given in ° 5.

2. CLASSIFICATION METHODS

We compared three automatic classiÐcation methods :
Naive Bayes, neural networks trained with back-
propagation, and a decision-tree induction algorithm based
on C4.5 (Quinlan 1993). Both backpropagation networks
and various decision-tree algorithms have been used pre-
viously for astronomical classiÐcation (Storrie-Lombardi et
al. 1992 ; Naim et al. 1995 ; Salzberg et al. 1995). Although to
our knowledge the Naive Bayes classiÐer has not been pre-
viously used for galaxy classiÐcation, it is easy to under-
stand how it performs classiÐcation, it is easy to implement,
it tends to be robust to noise in the data set, and it often
works quite well even when the basic assumption of condi-
tional independence does not hold (most of the time). See,
for example, Domingos & Pazzani (1997).

The Naive Bayes classiÐer (Ripley 1996 ; Mitchell 1997)
uses BayesÏs rule and the assumption of conditional inde-
pendence of the features to calculate the probability of a
class k given a feature vector (set of attributes of an object)

BayesÏs rule states thatx \ (x1, . . . x
m
).

p(k o x)\ p(x o k)p(k)
p(x)

. (1)

If we assume that the elements of the feature vector x are
conditionally independent, then we can rewrite p(x o k) \

This gives us the Ðnal Naive BayesÏs classi-<
i

p(x
i
o k).

Ðcation rule

p(k o x)P p(k)<
i/1

m
p(x

i
o k) . (2)

Thus, given a new feature vector, the Naive Bayes classi-
Ðer can determine the probability that the feature vector
belongs to a given class. The overall normalization is taken
such that the probabilities sum to 1. The algorithm we used
was implemented in the Waikato Environment for Know-

ledge Analysis (WEKA; Witten & Frank 1999). This is a
freely available software package that contains a large
variety of machine-learning algorithms.1

Neural networks trained with backpropagation
(Rumelhart et al. 1986 ; Hertz, Krogh, & Palmer 1991) have
been used previously in the astronomical community for
classiÐcation of galaxies by morphology (Storrie-Lombardi
et al. 1992 ; Naim et al. 1995) and spectra (von Hipple et al.
1994) and for star/galaxy discrimination (Odewahn et al.
1992). Broadly speaking, neural networks consist of several
layers of simple nonlinear processing units. The processing
units, or nodes, are connected together via weights, giving
some connections more signiÐcance than others. Each node
calculates its total input, y, by computing the inner product
of the inputs with the weight vector, y \ x Æ w. The output
of the node is then calculated by passing it through a
sigmoid function f (y) \ 1/[1] exp ([y)]. The magnitude
of the weights is determined by minimization of an objective
function that depends on how close the predicted output of
the network is to the true output based on a set of labeled
training data.

Our neural network consisted of an input layer contain-
ing 14 nodes (one for each feature), 10 hidden nodes, and
two to six output nodes. The network was fully connected ;
i.e., all input nodes were connected to all hidden nodes and
all hidden nodes to all output nodes. The backpropagation
software we used was NEVPROP.2 The network was run
for 80 epochs (presentations of all input examples) for two,
three, and four classes, 120 epochs for Ðve classes, and 100
epochs for six classes. The number of epochs was chosen to
minimize the ensemble error (see ° 4) and was within the
range used in previous studies (Opitz & Maclin 1999). The
use of 10 hidden nodes was based on prior experience
showing this to be an adequate number. The network was
trained using standard gradient descent, a learning rate of
0.01, and a momentum term of 0.9.

The decision-tree algorithm we used, J48, is the WEKA
implementation of the last public release (Version 8) of C4.5
(Quinlan 1996). J48 operates by recursively splitting a train-
ing set based on feature values to produce a tree such that
each example can end up in only one branch. An initial
feature is chosen as the root of the tree, and the examples
are split among branches based on the feature value for
each example. If the values are continuous, then each
branch takes a certain range of values. Then a new feature is
chosen, and the process is repeated for the remaining exam-
ples. When the classiÐcation of a branch is pure, i.e., it
contains only examples in a certain class, then the process is
stopped for that branch. The decision of which feature to
use for a given split is made by calculating the information
gain for that feature and choosing to split on the feature
that produces the highest information gain. The informa-
tion, or entropy, is calculated as whereS \ [£

i
p
i
log p

i
, p

iis the fraction of examples reaching a branch with a attrib-
ute value i. The information gain for a given split can be
calculated as G\ S(before split) [ S(after split). Details of
the decision-tree induction algorithm can be found in
Witten & Frank (1999).

1 The WEKA software package can be found at http ://
www.cs.waikato.ac.nz/ml/weka.

2 See the NEVPROP software, Version 4.1 Web site maintained by P.
H. Goodman at http ://www.scs.unr.edu/nevprop.
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The process just described for inducing a decision tree
works well for the training data sets, but it tends to produce
trees that are overÐtted to the training data and do not
generalize well to new examples. Thus, the Ðnal tree is
usually pruned to produce a more robust classiÐer. For the
J48 algorithm, the Ðnal tree was pruned using ““ subtree
raising,ÏÏ in which classiÐcation subtrees can be raised to
replace their parent subtrees. The examples along any
raised subtrees must then be reclassiÐed. This approach, as
well as other pruning options, results in smaller decision
trees and increases the generalization ability of the decision
tree. While we have discussed one implementation of
decision-tree inducers, other implementations have been
used for star/galaxy discrimination (Weir et al. 1995) and
morphological galaxy classiÐcation (Owens et al. 1996).

An ensemble of classiÐers can be implemented in a
variety of ways. One is to train several individual classiÐers
whose output decisions can be combined (typically by
voting or averaging) to allow classiÐcation of new inputs.
Ensembles have been shown to perform better than individ-
ual classiÐers in a variety of domains, (e.g., Bauer & Kohavi
1999 ; Opitz & Maclin 1999 ; Dietterich 2000). In this study
we used an ensemble created by bootstrap aggregation
(bagging ; Breiman 1996). Bagging is one of the easiest
ensemble methods to implement and was the only one
studied here. This algorithm creates the di†erent classiÐers
by training them on bootstrap replicates of the original
training set. Each classiÐerÏs training set is created by ran-
domly sampling, with replacement, N examples from the
original training set, where N is the number of examples in
the original training set. Some examples will appear more
than once in the bootstrap replicates, while others will not
appear at all. When an individual classiÐer is trained, its
overall error may be higher than for a classiÐer trained on
the original training set. However, because the ensemble is
created by voting the predictions of each classiÐer for each
test set example, if a plurality of the classiÐers make the
correct predictions, the ensemble will make the correct pre-
diction. In this manner, the voting can overcome the
increased overall error on the part of individual classiÐers.
Other methods of creating ensembles are reviewed in Diet-
terich (1997).

3. DATA PREPARATION

The list of galaxies and their classiÐcations was taken
from Naim et al. (1995). Certain galaxies were eliminated

based on image quality and availability, leaving 800 of the
original 834. We extracted an initial set of 22 features from
the images taken from the Digitized Sky Survey, as
described in Bazell (2000). Table 1 gives a brief description
of the features used in this study. The cross-correlation
matrix of the initial 22 features showed that a number of
them were signiÐcantly correlated. In particular, the total
area of the galaxy and its mean brightness had a correlation
coefficient of 0.95, leading us to remove the area feature.
Similarly, neighboring concentration indices, e.g., C2, C3,
and C4, typically had correlation coefficients above 0.75.
Thus, of the initial nine concentration indices, we kept only
C3 and C6, which themselves were correlated at the 0.50
level. This reduced the initial set of 22 features by eight,
leaving 14 features with a maximum cross correlation of
[0.74 between C3 and r25/r75.The 800 galaxies were randomly divided into 10 groups
of 80, and one group was set aside as a test set while the
other nine groups (720 galaxies) were combined into a train-
ing set. This process was repeated, setting aside each of the
10 groups as a test set and combining the remaining groups
into the training set. This procedure is called 10-fold cross
validation. For each cross-validation training/testing set,
the test data was never seen by the algorithm during the
training process. The random division into 10 groups was
repeated Ðve times resulting in Ðve di†erent 10-fold cross-
validation training/testing sets.

We further created 25 bootstrapped data sets from each
of the 10 cross-validation training sets. The replication steps
were performed independently for each cross-validation
training set. The cross-validation test sets of 80 galaxies
served as test sets for the 25 bootstrapped training sets.
Again, the bootstraps and the test sets had no galaxies in
common. Each of the algorithms studied used exactly the
same training and testing data sets.

4. CLASSIFICATION RESULTS

A summary of our results for the individual classiÐers and
the bagged ensembles is shown in Table 2. The number of
output classes is shown in column (1). Columns (2), (4), and
(6) show the test set error of the individual classiÐers, inE

Spercent, averaged over Ðve sets of 10 cross-validation runs.
Columns (3), (5), and (7) show the test set error forE

Bbagged ensembles, averaged over Ðve sets of 10 cross-
validation runs.

A number of interesting patterns can be seen from these

TABLE 1

DESCRIPTION OF FEATURES USED IN MORPHOLOGICAL CLASSIFICATION

Feature Name Description

Peak brightness . . . . . . . . . . . . . . Maximum brightness level in the image
m

q2q3 . . . . . . . . . . . . . . . . . . . . . . . . . . Ratio of Ðtted slope of I(r) vs. r for the second and third quartiles
Ellipticity . . . . . . . . . . . . . . . . . . . . . Ratio of the semimajor to semiminor axis length
Area . . . . . . . . . . . . . . . . . . . . . . . . . . . Number of pixels contained in the object
Max(rI) . . . . . . . . . . . . . . . . . . . . . . . Maximum value of the plot of rI(r) vs. r
Asym . . . . . . . . . . . . . . . . . . . . . . . . . . Comparison between original galaxy and galaxy rotated 180¡
r25/r75 . . . . . . . . . . . . . . . . . . . . . . . . . Ratio of the radii at which 25% and 75% of light is enclosed in a plot of I(r) vs. r
RBulge . . . . . . . . . . . . . . . . . . . . . . . . . . Radius where I(r) falls to 90% of peak value
C3, C6 . . . . . . . . . . . . . . . . . . . . . . . . . Concentration indices for the annuli 3 and 6
Isophotal displacement . . . . . . Maximum displacement of the centers of Ðve isophotal levels
Isophotal Ðlling factor . . . . . . Area of an isophotal level relative to the area of the enclosing ellipse
Pmax . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum value of the normalized co-occurrence matrix, c

ij
Entropy . . . . . . . . . . . . . . . . . . . . . . . [£

i,j cij log (c
ij
)
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TABLE 2

AVERAGE TEST SET CLASSIFICATION ERRORS FOR SINGLE CLASSIFIERS,
AND BAGGED ENSEMBLES,E

S
, E

B

NAIVE BAYES BACKPROPAGATION J48

Nclass E
S

E
B

E
S

E
B

E
S

E
B

(1) (2) (3) (4) (5) (6) (7)

2 . . . . . . 16.02 16.28 14.32 12.88 15.15 12.81
3 . . . . . . 31.72 31.35 24.98 22.02 27.80 21.45
4 . . . . . . 50.02 50.22 46.95 43.02 50.63 41.42
5 . . . . . . 53.55 53.70 55.05 49.82 59.15 50.50
6 . . . . . . 57.12 57.55 59.53 55.20 61.50 54.05

results. Considering Ðrst the single classiÐers, backprop per-
formed best (lowest test set error) for two, three, and four
classes. For Ðve and six classes, the Naive Bayes algorithm
performed slightly better than backprop. The backprop
algorithm showed between 7% and 12% decrease in classi-
Ðcation error when going from individual classiÐers to
bagged ensembles. J48 showed between 12% and 23%
decrease in classiÐcation error. This was due to a com-
bination of e†ects : J48 tended to have both a larger single
classiÐer error and a smaller ensemble error. The Naive
Bayes algorithm showed no signiÐcant change in error
when comparing individual classiÐers to bagged ensembles.
Examining the ensemble errors for backprop and J48 we see
that they both result in approximately the same classi-
Ðcation error, within one or two percentage points, even
though the percentage decrease in error was signiÐcantly
more for the decision trees.

For backprop and J48, it is also interesting to consider
the trend in the percentage change in error when using
ensembles compared to single classiÐers as a function of the
number of output classes. As we increase the number of
output classes, both backprop and J48 show a trend toward
smaller percentage change in error.

5. SUMMARY AND DISCUSSION

Our preliminary results using ensembles of classiÐers
clearly show the utility of this technique for decreasing clas-
siÐcation error when performing morphological galaxy
classiÐcation, at least for this data set. A variety of tech-
niques are available for creating ensembles, but we exam-
ined only bagging, which is one of the easiest to implement.
Bagging to create ensembles of classiÐers has been studied
by a number of researchers, e.g., Breiman (1996), Bauer &
Kohavi (1999), Opitz & Maclin (1999), and Dietterich
(2000). It has been shown to be e†ective in decreasing classi-
Ðcation errors for learning algorithms that are unstable
(Breiman 1994). Basically, a classiÐer is unstable if per-
turbing the training set, as is done with the bootstrap
approach by removing some training examples and repeat-
ing others, allows a di†erent classiÐer to be built. Neural

networks and decision trees are unstable in this sense,
whereas the Naive Bayes classiÐer is stable. If the di†erent
classiÐers within an ensemble perform well individually and
their predictions are not correlated, then the combined
outputs of the ensemble often will be more accurate than
any of the individual classiÐers. As expected, based on the
instability of the algorithms, we saw a reduction in error
rate for both the backpropagation network and the decision
tree when using bagged ensembles.

There is still a large parameter space to explore for the
di†erent classiÐcation algorithms. For backpropagation
networks, the learning rate and the momentum can be
varied as well as the number of epochs trained. Opitz &
Maclin (1999) also showed that ensembles created using
networks trained with di†erent initial weight values also
performed well relative to individual classiÐers. For J48,
there are several parameters that can be set. The conÐdence
value determines the degree of pruning ; lower values cause
more drastic pruning. Trees can be created without any
pruning.

The trend of decreasing percentage change in error
between single classiÐers and ensembles with an increasing
number of output classes was apparent with both the neural
network and decision-tree classiÐers, even though the two
methods showed signiÐcantly di†erent single classiÐer
errors. This trend was not evident in the work of Opitz &
Maclin (1999). However, they used a variety of data sets
with di†erent training and test set sizes and numbers of
output classes. Nevertheless, even for six output classes,
there was still a 7% and 12% decrease in error for backprop
and J48, respectively. Further investigation is needed to
understand the source and signiÐcance of this trend. This
has direct bearing on the limits of applicability of the
bagged ensemble method.

There are other approaches to handling multiclass prob-
lems. For example, distributed output codes were studied
by Sejnowski & Rosenberg (1987), and error correcting
output codes have been used by Dietterich & Bakiri (1995)
and Ricci & Aha (1998). Applications of these methods to
astronomical data are planned.

We are in the process of making a more detailed exami-
nation of the results presented here. We would like to
understand why the decision-tree approach gives a larger
decrease in error going from individual classiÐers to ensem-
bles. We also plan to examine the utility of ensembles for
classiÐcation using other galaxy data sets, other classiÐers,
and other ensemble methods.

We thank the anonymous referee for making suggestions
that helped clarify some concepts in this paper and make it
accessible to a broader readership. This work was per-
formed under the support of NASA AISRP grant NAG
5-8166 and was also supported by a grant from the Office of
Naval Research.
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